
Problems on the contact between semi-infinite beams and an elastic wedge 1063 

REFERENCES 

1. Popov, G. Ia. and Tikhonenko, L. Ia. , Two-dimensional problem of the 
contact between a semi-infinite beam and an elastic wedge. PMM Vol. 38, 
Nr! 2, 1974. 

2. Tikhonenko,L. Ia., Plane mixed problem of heat conduction for a wedge, 
Differentsial’nye Uravneniia, Vol. 9, % 10, 19’73. 

3. Tikhonenko, L. Ia. , Plane contact problem for an elastic wedge and a coupled 
semi-infinite elastic rod. In: Stability and Strength of Structural Elements, 
Dnepropetrovsk Univ. Press, 1973. 

4. Cherskii, Iu. I. , Normally solvable smooth transition equations. Dokl. Akad. 
Nauk SSSR. Vol. 190, K 1. 1970. 

5. Gakhov, F. D. , Boundary Value Problems. (Engliah ovation), Pergamon Press, 
Book & 10067, 1966 (Distributed in the USA by the Addison- Wesley Publ. Co. ). 

6. Popov, G. Ia., On an integro-differential equation. Ukr. Matem. Zh, , Vol. 12, 
t$ I., 1960. 

7. Bantsuri, R. D. , Contact problem for a wedge with elastic support. Dokl. Akad. 
Nauk SSSR, Vol. 211, @ 4, 1973. 

8. Titchmarsh, E., ~tr~uction to Fourier Integral Theory. Gostekhixdat, Moscow- 
Leningrad, 1948. 

9. Gradshtein, I. S. and Ryzhik, I. M. , TablesofIntegrals,Sums,Series and 
Products. Fizmatgiz, Moscow, 1963. 

10. Popov, G. Ia. , On the analysis of an infinite hinge-alit beam slab on an elastic 
half-space. Izv. WZ, Strait. i Arkhit. ,I@$ 1959. 

11, Popov, G. la., Bending of a semi-in&rite plate resting on a linearly deformable 
foundation. PMM Vol. 25, K 2. 1961. 

Translated by M. D. F. 

PMM Vol.39, I+! 6, 19’75, pp. 1110-1117 
L. P. LEBEDEV 

(Rostov-on- Don) 
(Received January 2, 1975) 

Withiu the framework of the Cauchy problem, a class of models of a linearvis- 
coelastic body subjected to the stability principle of the natural unstressed state 
state ofviscoelastic bodies (Principle Y)ia isolated in Cl]. The principle Y is 
formulated as follows. Let the boundary conditions be such that the appropriate 
elasticity theory problem has a zero solution, If a viscoelaatic body is free of 
external loads at each instant f > 0 , then for every initial state, strain of the 
body vanishes as t --) 00. The principle Y is called partial if it is satisfiedonly 
for some particular class of viscoelasticity problems. 

Sufficient conditions for compliance with the partial Y principle are obtained 
in this paper for models of viscoeiastic bodies within the framework of the fun- 
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damental initial-boundary value problems for finite bodies. 

1, Potmulrtion of the problem, The law connecting the strain 8kr and 
stress okr tensors is taken [l, 21 as 

c (Qt) ok1 = f!t (a,) errdk, + 2B (a,) a&l, 2% = ukJ + %k 

Here A (P>, B (P), c (P> are polynomials of degree mA, mn, mc respectively, 

mA < mB, m 6 mB, the symbol 6kl is the Kronecker delta, at is the partial de- 
divative with respect to the time t, f&k, (where k = 1, 2, 3 ) are the components of 
the displacement vector a, the subscript (I) after the comma denotes differentiation 
with respect to the corresponding space coordinate (x1), and summation is taken over 
repeated subscripts. 

The linear viscoelasticity equations are 

B (a,) Aa + [A (a,) + B (&)I grad div a - C (a,> pW a = -C (8,) F (I. 1) 

The first initial-boundary value problem of linear viscoelasticity, the Problem A 
is considered (see Notes 3.1 and 3.2 for the remaining problems) 

Here p>O isthedensttyofthe 
boundary of the finite volume a 

The solution of the Problem A 

a-u+ 

k<NEmax {mB-1, mc + I}), (1.2) 

material, F are the external body forces, I’ is the 
which is henceforth assumed sufficiently smooth, 
is sought in the form N 

“OY uo (x, t) = x(t) 2 tkb, 
k=a 

where x (t) is a fixed, infinitely differentiable function, equal to unity in the neighbor- 
hood of the point 1 = 0 and to zero for t > 1. The vector function u evidently satis- 
fies the homogeneous boundary and initial conditions (1.2) and is a solution of (1.1) 
with a known altered right side Cp. 

The Laplace transform 
v (z, p) = Lu s 5 eVpt u (x, t) dt 

0 

is used to investigate Problem A, and results in some boundary value problem with a 
parameter, i. e, Problem B. Problem B is posed in a generalized formulation below (De- 
finition 3.1). 

2. Auxillrry mrterirl, The following spaces are introduced. Let H be some 
separable, complex Hilbert space, 

The space Ek (Y, H) is a space of functions cp (p) with values in H which are ana- 
lytic ( [3], p. 134) in the half-plane Rep s u > y > 0 and have the finite norm 

The space P, (y, If) (k > 0 is an integer and y > 0) is a complex space of func- 
tions f (r) with values in H, posse&ng generalized derivatives &‘f (see [4]) up to 
order k with respect to t inclusive on R, = [0, co) such that &‘f = 0 for t = 
0 (0 < r ( k) and the finite norm is 
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Analogous spaces for the scalar functiom have been introduced in [5]. 
The space L2 (R,, 8) [4] which is the space of functions q (t) with values in a Ba- 

nach space S having the finite norm 

Iq t~S(n+JO =~!a(t)llUt 
0 

will also be used later. 
The following theorem holds. 
Theorem P. -W . The Loplace transform operator L continuously maps the space 

Pk (TV a) tk > 0 is an integer, y > 0) onto the space J??k (y, H), The operator L 
is continuously invertible and its inverse is the inverse Laplace tranaform operator. Naa 

mely,ff 9 @> E Ek (y, H), thMI 

a) there exists a function cp (y + ir) such that 

lim j ]S~(r+it)-_(fo:+it)~dz=O 
04Y -.a 

b) there exists a function f (t) E Pk (y, H), such that 

and cp (P) = 4’ (t) 
The Theorem P.- W. is a generalization of the Paley- Wiener theorem (see [5]). To 

prove its first part, an arbitrary element f (t) from PA (y, a) is expanded in a series 
in the complete orthonormalized basis $,of the space H 

f(8) = i UtM%. ~(~) = (f*qJJH 
-1 

From the form of the norm 

[fUzqr(u,Ht = f 5 e+‘i 1 a,'d,(t)la~~ 

Q-1 m=o 

and the definition of the space Pk (r, H) there results that o& (t) E Pa (e-y') Y > 
0 (see [S]) . From Theorem 7.1. in [5] (see also the remark there), it follows that a, = 
I&, E ER (y) (see [5]), and the operator L is continua& Hence, and from the ortho- 
normality of the basis ?Pn there results that m 

cp=L!=r,o&n 
-1 

belongs to the space Ek (y , H) and tire operator L acts cagey from Pk (y, H) 
into Ek (y, I;r). The reverse assertion of the P.- W. Theorem is proved analogarsly. 

Later, estimates of the polynomials P @, a, f3) with the real coefficients 

P tp, a, 6) = D @, a) + Bp2C Cp) 
I) CP, a) = do (a) pn + . . . + &, (a), C tp) = cop@ + . 8 l + % CO > 0 

wi~be&tained,whem dk (a) mecontimmsfunctia oftheparameter a, q z 
mc < n, n > 0. 
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Theorem 2. 1. For all CY. E IO, cd, fI E [0, $1; a”, fi”< oo ,let all roots 
pkofthepolynomial P(p? CZ, p) lieinthedomain Repra<Oandd,(a)#O, 
Then the following estimate holds 

(2.1) 

inf {crd, (a) - c&r (a)} = ms > 0, 01 E lo, a01 

Here and henceforth mk > 0 are certain podive constants. 
PI oo f , Expansion of the polynomial P (p, cc, fI) into psi&e factors and the cqndi- 

tion Re pk < 0 show that the estimate (2.1) holds if the coefficient of the highest 
power in p does not vanish, This latter is always valid for n > q -j- 2, and if p E 
[6, PJ, where 6 > 0 is any number, then also for n < q + 1. (It must be taken 
into account that the set of roots pk forms a bounded closed set in the domain u < 0 
on the plane of the complex variable p = CI + i’G for the mentioned a, p .) In par- 
ticular, the estimate (2,l) holds for the polynomial D(p, a). Hence, it follows that for 
every M < 00, so smti a 6, > 0 can always exist such that the estimate (2.1) will 
also hold for 1 p 1 < M and p E 10, 6,I . 

There remains to prove the estimate (2.1) under the conditions P: 1 p 1 > M, 
60 > 0, a E IO, a019 B E IO, 601, n < q + 1, where M is sufficiently large. 

Let n = q + 1. Since all the coefficients of the polynomial P (p, 01, p) are posi- 
tive (this follows from the condition Re pk < 0), we deduce 

I Pp?ip y..y = I P I" I do (4 + Bcoa + BCl + w-b + 
01, j3) I > I p I" MO (4 - m&W > m4 1 P I” >0 

m, = skp 1 i1 (p-l, a7 IN--Q for a E [O, CC], fi E [O, 

B”1, I PI> 1 

Now let n = q. Then 

IWP, al fi) I = Ip I *-ll X&A a7 B) + ix2 (P, a7 B) + 

P-lp, (p-'1 017 B) I 
x1 (p, a, fi) = -p (3c,a + Cl> T2 + B (co@ + w2 + C26 + 4 f 

d,u + dl X2 (p, a, B) = -Bco~s + BT (3coa2 + 2w + 
c2) + do (4 +r 

(if Q < 3, then c, = 0 for s > q). It is seen that 

1 P, (P-‘1 01, B) I -S m5 < 00, for B E 10, B”1, I P I > 1, 
cc E IO, a”1 

If I x1 1 > q > 0, then under the conditions P the estimate (2.1) holds with the 
constant m, = l12q. In particular,this is valid if 1 -c 1 Q 1/2 u and 6. is sufficiently 
small. 

Let Ixrl<q and Iz[>‘/,o,then 

I x2 (14 a7 j3) I = 1 z (3c,u + CJ'l I C&o - cod, + B @Co2fJ3 + 
8c,c,u2 + 2c,c,o + 25% -I- ClC2 - co4 + (COXI + 2codo4 I 
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If M is sufficiently large, and i$,, q are small,then the value of the second factor in 
the right side can be given a lowei bound in terms of ‘/am,. Indeed, a number q, > 0 
can be indicated such that for o > 0, all the terms of this factor in parentheses are 
positive. If 0 < u < u,,, then this estimate holds for sufficiently small 6, > 0. The 
estimate (2.1) hence results. 

It must be noted that an additional condition in case r = n - 1 for Theorem 2.1 
will reinforce the main condition Re pk < 0, since the first Hurwitz determinant for 
the polynomial P (p, a, /3), which should be positive, is 

B Wll (4 - cl& WI + B” hc2 - WJ > 0 

8. Bufflciant conditionr for compliance with the prrttrl prln- 
ciple Y. Let H be a complex space of vector-functions q = (cpi, cp,, qs)formed 
by the closure of functions cpk continuously differentiable in Q and eqhar to zero on r 
in the norm generated by the scalar product 

(q*qqa = 1 (Pk, I;i;k* I (-IQ 
n 

where qk is the complex-conjugate to the function qk. Evidently 

H = W2y” (B) x Wz”” (5-2) x W,“(‘)(Q) 

Definition 3. 1. The vector function v E H satisfying the equality 

S @(~)~,&r+[A(p)-t-~(p)]divvdivcpSd~+ (3. Q 
n 

s P2c (P) Pv&t 130 = s fkqk dQ, 
n 

f = (fl, fat f2) = La 
n 

for any vector function cp E H is called a generalized solution of the Problem B for 
a fixed p . For the definition to be correct it is required that the right side of (3.1) be 
a continuous functional in cp in the space H. 

Using the Riesz theorem about the representations of a continuous linear functional in 
Hilbert space,(3.1) can be written as an operator equation in the space H 

B (~1 v + [A (P> + B (PII G,v + pp”C (p) Ggv = Kf (3.2) 

P&v NH = S div v divi dR 
n 

(G2V*cP)~ = 1 @&d% 
n 

(Kf .~y)~ = 1 f&& 
n 

L e m m a 3. 1. The operators G, and G, are continuous and positive in the space 
H. The operator Ii acts continuously from the space W:(-‘) (52) X W,q-‘) (Q) X 
W20(-1)(Q) in H; /I Gllj = 1. 

Corresponding properties of the operators result from their definition and the imbedding 
theorem of Sobolev [S]. In n] it is proved that 11 Gill = 1. The operator of the left side 
of (3.2). denoted by T (p) is considered. The following identity holds: 

(T (P) cp-cph = II cp lbx2 PO (P, a, B) (3.3) 

P, (P, a, B) = B (P> + a [A (P) + B (P)] + fJp2C (P> 
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u = IIq.+? (Mp-(P)H, P = dcp ttHa~‘h’~~cp)~ 
TherefollowsfromLemma3.1thatO<a\<1, 0<f3<flo<m. 
L em m a 3. 2. Let the polynomial P, (p, a, 0) satisfy all the conditions of The- 

orem 2.1, where a0 = 1, /3” = PO, and Kf E E, (0, H). Then (3.2)i.s uniquely sol- 
vable in H for all Re p > its solution v (p) E (0, n (0, 
L2 (a)), = r=nformc+1~~ndk+l=r==nformc=n. 

There follows from the identity (3.3) and Theorem 2.1 that for Re p >, 0 the opera- 
tor T (p) possesses a continuous inverse operator T-l (p). It is seen that the operator T’(p), 
the conjugate of the operator T b) is T (p). There results from the above that T’(p)cp=O 
for Re P > 0 , if and only if cp = 0. According to the Banach theorem on operators with 
a closed domain of values ( [S], p. 234), the domain of values of the operator T (p) for 
Re p > 0 is the whole space IX. Therefore,(3.2) is uniquely solvable for all Kf E A. 

Furthermore, T (p) is an entire operator-function of the parameter p. Hence, and from 
the continuity of the operator T-l (p) there results the analyticity of the solution v (p) 
of (3.2) in the domain Re p > 0, where the function Kf (p) is analytic. 

To obtain an estimate of the solution v (p) , Eq. (3.2) in which ita solution has been 
substitute-d, is multiplied scalarly term-by-term in the space H by v (p). From the ob- 
tained equality, and taking account of (3.3)’ and Theorem 2.1, the following estimate is 
deduced (for y = Oi,: 

11 v (p) lH* (1 + I P lak) + 7 IJ v (P) II&i) (1 + I P Ik+q+2) G rrQ n Kf hi* 

where k is defined by the conditions of the lemma, Re p > 0, ms < 03. Taking into 
account this estimate, the definition of the operator Gs and returning to the equality 
obtained above, an estimate can be deduced for y = 1 also (with an altered constant 
me) , which completes the proof of the lemma. 

Application of the P.- W. theorem now assures the existence of a unique generaltzed 
solution u (t) of the Problem A in the following sense: u (t) satisfies the equation 

(G,u&“C(- ~?,)q)~ - (KQ,.~p)H}ddt = 0 

for an arbitrary function 9 (t) infinitely differentiable with respect to t , and with va- 
lues in the space H equal to zero for t > T (the value T < oo is its own for each 
function 4). 

Using the existence theorems proved in [Z], the definition of the generalized solution 
of Problem A may be given the form of the corresponding definition from [Z]. Therefore, 
the following theorem is valid. 

Theorem 3. 1. Let all b, from the initial conditions (L 2) belong to the space 
H, and C (a,) F E L2 (R,, L.16 ($2)). Furthermore,Let all the roots psof the polyno- 
mial P, (p, a, b) lie in the domain Re p < 0 and do (a) # C, for all a E IO, 
11, p G IO, Bol. 

Then there exists a unique generalized solution u (t) of Problem A belonging to the 
space Pk (0, H) n P, (0, L2 (a)), where k = r = rnB if rnB > mA, mB > 

mc+l andk+l=r=mBifmB>rnA,rnB~ m,>Oand 

inf [crd, (a) - cod, (a)] = m2 > 0 for cc~[O, 11 
Here d, (a) = fiI (1 + a) f O1CCs-j, j = mB - m.4, a, = 0 for S < 0, and 
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6, p8 are coefficients of the polynomials A (p) and B (p) , respectively. 
The existence of a unique “complete” generalized solution of hoblem A follows from 

Theorem 3.1 by virtue of the estimates of the solution. A direct corollary to Theorem 
3.1is: 

Theorem 3. 2. Let all the conditions of Theorem 3.1 be satisfied. Then 

j{i lafak+ ~~~~~aJ~ao)~~-+O for M~UJ 
bi J=O J=0 

As a corollary from Theorem 3.2 and the inequality [4], 

IG&<m,~ i !PWlW~ 1 = 0,. . ., g-l>0 
Ms=t? 

with a constant m7 independent of M, cp (t), there results that as t -+ 00 

II 4’a ~LWI) -+ 0, z=o,. . .,r--l 

1) 4”a \EI -+ 0, s=o,. . .,/i-l, if k>O 
uniformly in t . 

It hence follows that the conditions of Theorem 3.1 are sufficient conditions for com- 
pliance of the partial principle Y. 

Note 3. 1. All the results obtained above are carried over directly to the case of 
a mixed initial-boundary value problem of linear viscoelasticity (part of the body boun- 
dary is rigidly fixed, and a surface load fi acts on its other part). Here only changes which 
must hence be inserted in the conditions of the corresponding theorems will be noted, 

The space H is replaced by H, where H, is the closure of vector-functions cp = 
(vi, qa, cps),continuously differentiable in Cl which satisfy homogeneous geometric 
conditions for supporting the body (such as the Kom inequality [8] is satisfied for cp ) in 
the norm induced by the scalar product 

((P’+‘)H = + \ (qk, I + %, k) ($k, I + $1. k) dQ 

The polynomial P0 (P, CL, 0) zd d, (a) are replaced by 

Pi (p, cc, b) = 2B (P) + ~4 (P) + pP2c (P) 

d,, (CC) = 20, + CCCX,-j, i = mB -mu 

The range of variation of the parameter a is [0, 11 to [O, 31; this is a result of 
the known inequality [7] 

\ Idivcp(adQ<%&, 
n 

Moreover, it is necessary to impose everywhere the condition 

c (a,) f, E L2 (R+7 L”* (rl)) 
where r1 is the part of the body boundary on which the load f, acts, 

N o t e 3. 2. When the body boundary is not clamped, or the support allows displace- 
ment of the body as a rigid whole, corresponding theorems also hold in a formulation 
which agrees with the formulation of the theorem from Note 3.1. Not for the whole dis- 
placement vector a, but for its “deformation” part al, which is extracted as follows: 
follows : 
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Ovh)~l = 0, S= 1, . . ., m 

where $., is the basis of the rigid displacement vectors (m = 6 in the case of an unfixed 
boundary). 

N o t e 3. 3. For each specific problem of the linear viscoelasticity problems posed, 
the domain of variation of the parameter /3 is bounded. For partial principle Y to be 
satisfied simultaneously for all such specific problems, it is necessary to require that all 
roots of the appropriate polynomials P, @, a, p) lie in the left half-plane of the com- 
plex variable p for all 01 E LO, awl, fi E R+. 

The author is grateful to I. I. Vorovich for formulating the problem. 
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The stress distribution in a circular isotropic ring with a crack on part of the 
concentric circle is investigated. A system of functional equations goveming 
the coefficients of the complex Fourier series expansion of the stresses acting 
on the circle on which the crack is located is obtained. The solution of the 
mentioned system of equations is obtained by using a factorization method, 
which permitted reduction of the initial system of equations to two coupled 
infinite systems of algebraic equations. The possibility of using the method 


